
Parallelizing Multi-Head Attention on GPUs

Tanvi Bhandarkar
UID:705525339

tanvi17@ucla.edu

Hemil Desai
UID:405508015

hemil10@ucla.edu

Kriti Gupta
UID:305491572

kritigupta@ucla.edu

Abstract

Transformers have become ubiquitous for Machine Learning tasks related to Natu-
ral Language Processing. They are also being actively researched for Computer
Vision applications and have shown some promising results. This is exciting be-
cause this leads to the unification of a common model for a majority of Machine
Learning tasks. As a result, optimizing Transformer kernels and coming up with
novel GPU parallelization for Transformer kernels can have huge payouts. We
explore and evaluate different parallelization techniques for Transformers on GPU
using CUDA. In particular, we implement a parallel reusable implementation for
the multi-head self attention kernel, which forms the core of the transformer model.
We find that a vertical strategy utilizing CUDA streams that parallelizes a single
operation of the attention kernel achieves speedups between 2x and 4x

1 Introduction

Natural Language Processing (NLP) is advancing quickly, in part due to an increase in available
compute and dataset size. The abundance of compute and data enables training increasingly larger
language models via unsupervised pre-training. Transformers have become ubiquitous for Machine
Learning tasks related to Natural Language Processing ever since the papers Attention is all you
Need [1] and BERT [2] were released.They are also being actively researched for Computer Vision
applications and have shown some promising results. This is exciting because this leads to the
unification of a common model for a majority of Machine Learning tasks. As a result, optimizing
Transformer kernels and coming up with novel GPU parallelization for Transformer kernels can have
huge payouts. We explore and evaluate different parallelization techniques for Transformers on GPU
using CUDA. In particular, we implement a parallel reusable implementation for the multi-head self
attention kernel, which forms the core of the transformer model. Self-attention computations are
the same, just replicated across multiple heads with different parameters. As a result, this provides
many opportunities for data and input reuse. Moreover, the output of each head is concatenated and
multiplied by a common matrix, thus necessitating the parallel and timely execution of the different
heads.
We basically explore two broad directions of experimentation:

• Combine all CUDA kernels in a single MultiHeadAttention and parallelize across native
C++ threads

• Run CUDA kernels at the same level of Attention in parallel using CUDA streams and
events

CS259 Final Project

Figure 1: Multi-Head Attention

2 Related Work

2.1 Transformers

The sequence-to-sequence models are based on use of recurrent neural network in encoder-decoder
architecture. These architectures have limitations when the input has long sequences and after certain
time stamp they cannot entirely retain the information from initial elements when the model starts
incorporating new elements into the sequence. To deal with this limitation of decoder new concept of
transformer model [Attention is all you need] was introduced. It is entirely built on the mechanism of
self-attention without using sequence-aligned recurrent architecture.

The Attention function can be described as mapping a query and a set of key-value pairs to an
output. Here, the query, keys, values and output are all vectors. The output is computed as a
weighted sum of the values, where the weight assigned to each value is computed by a compatibil-
ity function of the query with the corresponding key. A single head attention kernel can be described as

Softmax(
Q×KT

√
dk

)× V (1)

2.1.1 Multi-Head Self-Attention

The multi-head mechanism checks the scaled dot-product attention multiple times in parallel. Instead
of only computing once, the output of independent attention are simply concatenated and linearly
transformed into expected dimensions. It allows the model to jointly attend to information from
different representation subspaces at different positions. All of these similar Attention calculations
are then combined together to produce a final Attention score. This is called Multi-head attention and
gives the Transformer greater power to encode multiple relationships and nuances for each word. An
overview of the multi-head attention kernel is presented in Figure 1.

2.2 NVIDIA’s Megatron-LM

Megatron-LM [6] is a powerful transformer that supports model-parallel and multi-node training. A
transformer layer consists of self-attention block followed by two-layer multi-layer perceptron(MLP)
as shown in figure 2. As shown in figure, the model parallelism is separately introduced in each of
these block. f is an identity operator in the forward pass and all reduce in the backward pass while g
is an all reduce in the forward pass and identity in the backward pass.

2

Figure 2: Megatron-LM

The model parallel approach can be characterized as techniques aimed at reducing communication
and keeping the GPUs compute bound. Rather than having one GPU compute part of the dropout,
layer normalization, or residual connections and broadcast the results to other GPUs, the Megatron
duplicates the computation across GPUs. Since all values are either local or duplicated on a GPU,
there is no need for communicating updated parameter values int this formulation.

3 Methods

As described in the transformer introduction above, the Multi Head Attention Kernel includes three
core operations:

• General Matrix Multiplication (GEMM)

• Softmax

• Transpose

We first start by implementing these kernels natively on CUDA and describe the implementation of
each. Next, we look at techniques to parallelize the entire Multi Head Attention Kernel vertically and
horizontally using native C++ threads and using CUDA streams and kernels respectively. The core of
a multi head attention kernel is the single head attention kernel. The chronological order of a single
head attention kernel can be described as:

• X ∗WQ → Q (Q calculation)

• X ∗WK → K (K calculation)

• X ∗WV → V (V calculation)

• Q ∗KT (KT calculation)

• Softmax(Q∗K
T

√
dk

)

• Softmax(Q∗K
T

√
dk

)× V (Softmax ∗ V calculation)

3.1 CUDA Kernels for Core Operations

GEMM: We utilize shared memory and a tiling approach to implement matrix multiplication.
Since shared memory is shared per block, this gives a lot of reuse opportunities. The number of tiles
are calculated by (ROW_SIZE/BLOCK_SIZE) × (COL_SIZE/BLOCK_SIZE). Each
thread calculates one output element. It slides the tiles across the matrix and stores the elements in
shared memory. We first initialize a matrix of size BLOCK_SIZE ×BLOCK_SIZE (one each
for the two matrices being multiplied respectively) in shared memory for each tile. Each thread in

3

the block then loads one element into the shared memory. The threads are then synced. Then, we
calculate the partial dot product of the shared memory matrices corresponding to the thread id. We
accumulate these sums into a variable. This consists of one loop iteration. Then we move onto the
next tile and repeat the process. We impose error checking to prevent load and store for out of bounds
indices. After the tiles have slid over the entire matrix, we store the final sum into the output matrix.
This shared memory approach provides great throughput and latency benefits because each thread in
a block just does one global access per tile and gets to reuse BLOCK_SIZE elements from shared
memory (for MACs for its partial row and column). Throughput improves because the weights are
reused from shared memory across different inputs when increasing the batch size [5]. 1

Softmax: Softmax is calculated across each row of a N*N matrix. For the CUDA kernel implemen-
tation, we use a 1D grid across the row dimension. We utilize parallel sum reduction using threads
to efficiently store and calculate the softmax sums [3]. First, we slide the tile across the row of the
matrix. Each thread in the tile keeps on accumulating the exponentiated sum. The sum reduction of
each thread is then stored in a shared memory array. After the tile has reached the end of the row, the
threads are synced and then another level of sum reduction occurs in the shared memory array. In the
end, the exponent value of the current element is divided by the sum to get the softmax value.

Transpose: Transpose is also implemented using shared memory. The kernel is optimized to ensure
all global reads and writes are coalesced, and to avoid bank conflicts in shared memory. Note that the
shared memory array is sized to (BLOCK_SIZE + 1) ∗BLOCK_SIZE. This pads each row of
the 2D block in shared memory so that bank conflicts do not occur when threads address the array
column-wise [4]. 2

These core kernels are combined in the correct chronological order to get a single head attention
kernel. Combining the outputs from multiple single head attention kernels yield the Multi Head
Attention Kernel. As evident, Single Head Attention kernels can be parallelized since they are
independent operations. We also present a breakdown and analysis of a chronological Single Head
Attention Kernel in the results below.

3.2 Parallelization Strategies

We try out two parallelization strategies to parallelize the multiple single head attention kernels
in Multi Head Attention. At a higher level, these can be classified into vertical and horizontal
parallelization. At a technical level, the two approaches use CUDA streams/kernels and native C++
threads respectively.

Native C++ Threads: For this parallelization strategy, we create a single function for single head
attention, and then parallelize that function across native C++ threads. We pass in the parameters that
need to remain the same, and initialize other parameters in the function directly. We use std::thread
to launch multiple function calls in parallel. This can be considered a horizontal strategy because
one function can be considered as one horizontal row in 2 and each thread is running one function.
Therefore, multiple C++ threads are running in parallel.

CUDA streams: For this parallelization strategy, we create CUDA streams to execute a single
operation for Single Head Attention (like calculating the Q value), but the streams execute this same
operation for each of the different heads. In this way, the streams execute the same CUDA kernel
but with some shared parameters and some different parameters. This way, each operation in all
attention head executes at the same time and then the kernels move onto the next operation. This
can be considered as a vertical strategy because in every row of 2 the streams execute an operation
like multiplication with weights vertically across all heads, then all the streams move onto the next
operation (column) i.e. calculating attention.

1This strategy is adapted from mini-project 1
2https://github.com/JonathanWatkins/CUDA/blob/master/NvidiaCourse/Exercises/transpose/transpose.cu

4

4 Methodology and Evaluation

We test the native kernels as well as the two parallelization strategies across different batch sizes,
embedding dimensions and attention head dimensions. We also generate a breakdown of the different
operations in the single head attention kernel.

4.1 Single Head Attention Kernel Breakdown

First, we analyze each individual operation in Single Head Attention to calculate the CUDA warmup
times as well as any bottlenecks. This breakdown is calculated on a single thread. We first present
the breakdown for the first CUDA call to incorporate the CUDA warmup times in Table 1 and then
present the subsequent average of 5 calls in Table 2. The parameters used for this evaluation are:

• Batch Size - 1
• Sentence Length - 32
• Attention Head size - 64
• Embedding Dimension size - 768

Operation Time (s)
CUDA Malloc and Memcopy 0.150643
Q 2.9e-05
K 0.001255
V 0.001282
K Transpose 1.4e-05
Softmax 0.000301
SoftmaxMatrix * V 0.00579
Total 0.16

Table 1: Single Head Attention Breakdown for first CUDA call

Operation Time (s)
CUDA Malloc and Memcopy 0.002243
Q 1e-05
K 0.001779
V 0.001492
K Transpose 1.3e-05
Softmax 2.1e-05
SoftmaxMatrix * V 7.5e-05
Total 0.0056

Table 2: Single Head Attention Breakdown for subsequent CUDA calls

As we can see, the time difference between the first call and subsequent calls is substantial (0.1544s).
This is due to CUDA warmup incurred for the first call. We will now see whether this warmup is
replicated across parallel C++ threads.

4.2 Horizontal Parallelization

Now that we have seen the breakdown of a single attention kernel, let’s compare the times if we run
the single head attention kernels in parallel versus synchronously. We want to see whether the CUDA
warm-up times are replicated across threads. Table 3 shows the result for synchronous execution of
Multi Head Attention (executing the 12 heads in sequence) vs Asychronous execution using C++

5

Batch Size Sentence
Length

Attention
Head Size

Embedding
Dimension

Synchronous
Time (s)

Asynchronous
Time (s)

1 32 64 768 0.045244 0.417439
8 64 64 768 0.05776 0.401976
8 524 64 768 1.7438 2.05031
16 32 64 768 0.057411 0.391909

Table 3: Time comparison for C++ Threads Parallelization

threads. We compare the times across a variety of parameter sets as shown in the table. We notice that
the synchronous version performs much better than the asynchronous version indicating that in the
async version, each thread is incurring a CUDA warmup time. For smaller parameter sizes, the time
difference is substantial as the warmup time overpowers rest of the operations. However, for bigger
parameter sizes the warmup time is not so dominant. We conclude that the high CUDA warmup
times do not warrant the use of native threads to parallelize CUDA kernels. Further investigation is
needed into the possible reasons and resolutions of the warmup time.

Batch Size Sentence
Length

Attention
Head Size

Embedding
Dimension

Synchronous
Time (s)

Asynchronous
Time (s)

1 32 64 768 0.000612 0.000306
8 32 64 768 0.001656 0.000346
16 64 64 768 0.004788 0.001127
16 128 64 768 0.005832 0.002216

Table 4: Time comparison for CUDA streams Parallelization for calculation of Q

4.3 Vertical Parallelization

Since the warmup times pose a substantial overhead in the previous strategy, we try a vertical strategy
using CUDA streams and kernels. We try to vertically parallelize each operation of the single
head attention kernel. For comparison purposes, we calculate the comparison times across a single
operation of the kernel. In Table 4 we show the execution times of matrix multiplication across
CUDA streams and see the comparison for synchronous vs asyncrhronous execution. Since there
are 12 attention heads in most multi-head attention kernels, we use 36 CUDA streams to calculate
the Q, K and V values for each head in parallel. We see speedups of between 2x to 4x for the
single matrix multiplication operation across the single head attention kernels. We conclude that
vertical parallelization is the preferred choice for parallelizing multi head attention on CUDA. We
can synchronize each operation in the kernel to operate in parallel and then proceed chronologically
across the single head attention kernel.

5 Conclusions

In comparing different parallelization strategies, we notice that using native C++ threads incur a
CUDA warm-up time across each thread which hinders the parallelization of the single head attention
kernel. In comparison, a vertical strategy utilizing CUDA streams that parallelizes a single operation
of the attention kernel works best. A single operation using CUDA streams achieves speedups of
up-to 2x using CUDA streams. Parallelizing all of the operations of the kernel using CUDA stream
would thus achieve substantial speedups in total (≈ 2x * 5 -> 10x)

6

6 Statement of Work

• Tanvi Bhandarkar - Experimented with CUDA kernels at the same level of Attention in
parallel using CUDA streams and events.

• Hemil Desai - Implemented native CUDA kernels for the GEMM, Softmax and Transpose
operations.

• Kriti Gupta - Combined all CUDA kernels in a single function and experimented with
parallelization across native C++ threads

The rest of the work including Project Presentation and Project report was shared among all the
authors.

References
[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.
URL http://arxiv.org/abs/1706.03762.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018. URL
http://arxiv.org/abs/1810.04805.

[3] Mark Harris et al. Optimizing parallel reduction in cuda. Nvidia developer technology, 2(4):
1–39, 2007.

[4] Dmitry I Lyakh. An efficient tensor transpose algorithm for multicore cpu, intel xeon phi, and
nvidia tesla gpu. Computer Physics Communications, 189:84–91, 2015.

[5] Xiuhong Li, Yun Liang, Shengen Yan, Liancheng Jia, and Yinghan Li. A coordinated tiling
and batching framework for efficient gemm on gpus. In Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming, pages 229–241, 2019.

[6] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

7

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1810.04805

	Introduction
	Related Work
	Transformers
	Multi-Head Self-Attention

	NVIDIA's Megatron-LM

	Methods
	CUDA Kernels for Core Operations
	Parallelization Strategies

	Methodology and Evaluation
	Single Head Attention Kernel Breakdown
	Horizontal Parallelization
	Vertical Parallelization

	Conclusions
	Statement of Work

