
Detection of Propaganda Techniques in News Articles

Hemil Desai
hemil10@ucla.edu

Brian Wang
wangbri1@g.ucla.edu

Revanth Yamani
revanthky@ucla.edu

Atharv Sakhala
asakhala@ucla.edu

Abstract

Motivated by the hope of unbiased, unaltered
news reporting around the world, we address
the question of detecting and classifying pro-
paganda techniques in written text. Here we
present our models and results aimed at solv-
ing SemEval 2020 Task 11: ”Detection of Pro-
paganda Techniques in News Articles”. Our
approach involves the use of the Hugging Face
Transformers Library for each of the two tasks.
We tested these models on a provided training
corpus of news articles labeled with classifica-
tions of spans and techniques, and then eval-
uated generality and performance on the test
set by submitting our prediction models to the
competition leaderboard. We compare the per-
formance of multiple transformer models and
submitted each to the competition for evalua-
tion. Additionally, we created a web-based ap-
plication that could host our models and run
predictions on input text so users are able to vi-
sualize the prediction of propaganda spans and
techniques for any text article they provide as
well as for included examples. In both tasks,
our models outperformed the baseline. Using
the Bert model architecture performed the best
for Span Identification (0.153 F1), while our
results for Technique Classification (0.677 F1)
were significantly higher with the highest per-
forming DeBerta-large model.

1 Introduction

Propaganda is a big concern in news reporting
around the world. Free and uncensored press is
important for disseminating truthful information
and preserving the fair exchange of ideas. Exam-
ples have been seen throughout history of state
governments and organizations attempting to bol-
ster a particular agenda or narrative regarding spe-
cific events that may not be entirely accurate. In
the past, visual images have been effective to bias
consumers and evoke a desired response from a

specific audience. Now, as text in the form of news
and event reporting is ubiquitous in print and on
the Internet, it can be difficult to accurately detect
the emotional language and logical fallacies that
indicate the presence of propaganda. This is when
propaganda is most powerful, and is a relevant issue
for the news reaching consumers today. The goal
of SemEval 2020 Task 11, titled ”Detection of Pro-
paganda Techniques in News Articles”, was to find
solutions for two separate tasks related to propa-
ganda detection. The first, Span Identification (SI),
focused on searching a document for fragments
of text containing any type of propaganda. The
second, Technique Classification (TC), involves
classifying spans of text already identified as pro-
paganda into one of fourteen classes.
We compared the performance of various models
found in the Hugging Face Transformers Library to
collect results for this task. Here we used models
such as Bert, RoBerta, and DeBerta to see if their
different implementations would affect overall per-
formance. Our results showed that each model was
able to perform the human baseline predictions.
The Bert model architecture performed the best
for the SI task, and the DeBerta model performed
the best for the TC task. The Transformer-based
models alone did not show significant results for
SI (0.153 F1 for the Bert-base model on the test
set). On the other hand, the TC task showed im-
pressive prediction results (0.677 F1 score for the
DeBerta-large model) that was among the top five
submissions for this challenge on the SemEval task
page.

2 Span Identification

The first task in detecting propaganda is span iden-
tification. This task involves identifying a span
of text in a document that contains a propaganda
technique. This is a binary sequence tagging task,

where the text is broken into tokens. Each token
has a binary classification (whether it is propaganda
or not).

In project, we explore several pretrained lan-
guage models to perform this binary sequence tag-
ging. These models simply use an additional lin-
ear layer atop the token embeddings from the lan-
guage models to perform binary classification of
propaganda. Though previously we had utilized
the codebase from team aschern1 (another group
participating in the span identification task), we
decided to implement our own span identification
models. The method used in aschern combines a
RoBERTa model with a Conditional Random Field
(CRF) layer. In our case, we experiment with 3
pretrained language models with linear classifier
layers. The primary goal of this experiment is to
determine the capabilities of these language models
alone on span identification, without using special
features or classifier layers.

2.1 Processing

For span identification, the dataset consists of news
articles with a corresponding list of labels describ-
ing the beginning and end indices of propaganda
spans within a particular article. Once the article
is tokenized, each word id must have a correspond-
ing label (whether it is propaganda or not). Thus,
the beginning and end indices must correctly align
with the binary labels. A similar challenge happens
when converting the predicted binary labels back
into beginning and end indices, with the added
issue that tokenization often removes certain arti-
facts from the original text (e.g. text accents, extra
spaces), affecting the accuracy of indices. Once
this data is preprocessed, we train our pretrained
language models.

2.2 Pretrained Language Models

We experiment with 3 different pretrained language
models: BERT (Devlin et al., 2018), RoBERTa
(Liu et al., 2019), and DeBERTa (He et al., 2020).
BERT is a bi-directional transformer model trained
over unlabelled data. RoBERTa improves upon
the training approach of BERT by using dynamic
masking of tokens during training, and removing
the next sentence prediction objective. Lastly, De-
BERTa improves upon both BERT and RoBERTA
by using a disentangled attention mechanism,
which represents words as both content embed-

1https://github.com/aschern/semeval2020task11

dings and position embeddings (as opposed to be-
ing summed into a single vector in BERT), and
alters the masked decoder to incorporate absolute
positions of words. We expect that in most cases, a
model using DeBERTa should outperform models
trained with BERT and RoBERTa - this is because
the propaganda spans often occur in reference to
a subject (e.g. for propaganda involving name-
calling, these cases often occur as the subject of
a sentence). More importantly, the relative posi-
tion of these spans may indicate propaganda. For
example, ”Jon Stewart calls the viewers a bunch
of ’uninformed sheep’”, shows that there is name
calling (”uninformed sheep”), which is in reference
to the ’viewers’. In this case, ’Jon Stewart’ is ex-
plicitly referring to them via the word ’calls’. We
believe a model that explicitly encodes the position
of different tokens may be able to better identify
spans of propaganda text.

3 Technique Classification

Building upon Span Identification, the second task
is to identify specific techniques of propaganda in
the spans identified earlier. There are around 18
propaganda techniques 2 identified by the task cre-
ators. Some spans have multiple propaganda tech-
niques, but such labels had the same combination
of techniques. As a result, the task combines this
labels and reduces the label set to 14 techniques or
classes. This can be presented as a multi-class se-
quence classification problem. Next, we will look
at the details of transforming and processing the
spans for sequence classification.

3.1 Adding Context to Spans

The spans in itself are relatively short compared to
the news article. As a result, they fail to capture
the context around the propaganda. This context is
extremely relevant for accurate technique classifi-
cation. We represent the span, context and article
as follows:

• Article A

• Span si ∈ S . S is the list of propaganda spans
from A.

• Left context cli, Right context cri , Full context
Ci = {cli, cri } of the span si, |Ci| the length of
the context

2https://propaganda.qcri.org/
annotations/definitions.html

https://propaganda.qcri.org/annotations/definitions.html
https://propaganda.qcri.org/annotations/definitions.html

We represent a sequence for the TC task
using two techniques inspired from Asch-
ern (Chernyavskiy et al., 2020) and Applica
AI (Jurkiewicz et al., 2020). For our ini-
tial approach, we construct the sequence as
[CLS] si [SEP] {cli, si, cri }. This includes the
span twice, and may add noise to the sequence.
Also, since the span is included twice, the con-
text length is shortened since we set a limit on
the max sequence length for the task. For our
preferred approach, we construct the sequence as
[CLS] {cli, [BOP], si, [EOP], cri }. Here we just
combine the left and right context with the span
and add special tokens before and after the span
(Beginning of Propaganda (BOP) and End of Pro-
paganda (EOP)) to separate it out from the context.
Initial runs showed that the second scheme worked
much better so we fix on it for our experiments.

For the construction itself, we set a maximum
length limit on the entire sequence. This max
length is enforced on the number of words. The
words are obtained using a basic tokenizer (split
by space). The context is constructed dynami-
cally given the sequence length and the span length.
First, the remaining length left for context is calcu-
lated and equally divided among the left and right
contexts. Second, we check if there’s any buffer
left after adding the left and right contexts. For
example, if the span is at the beginning of the ar-
ticle, there’s no left context and the buffer will be
half of the remaining length. The buffer is then
used to add additional context on either side. In our
example, we will use the buffer to extend the right
context. This is our dynamic context generation
approach.

We experiment with sequence lengths of 128 and
256. The model’s tokenizer increases the sequence
length and the final sequence length is constrained
in most transformer models, so we set the maxi-
mum limit to 256. Going shorter than 128 didn’t
make sense cause that would result in minimal con-
text.

3.2 Model Architecture

Once we have the sequence from the section above,
we pass it through a transformer backbone. We
experiment with 4 different transformer backbones
- BERT (Devlin et al., 2018), DistilBERT (Sanh
et al., 2019), RoBERTa (Liu et al., 2019), and De-
BERTa (He et al., 2020). The details of three of
them are described in Section 2.2. DistilBERT is

a compressed version of BERT obtained from dis-
tillation. It is smaller in size allowing for faster
infernce but at the cost of some performance drop.

A pass through the transformer backbone gives
the output representations for each token in the
sequence. We take the output representations from
the [CLS] token and pass it through a Dropout layer
(Srivastava et al., 2014) followed by a Linear layer.
The architecture is summarized in Fig. 1.

Figure 1: Technique Classification Model Architecture

4 Results

For all our experiments, we use Huggingface Trans-
formers (Wolf et al., 2020) for implementation. The
code is available in our github repo 3.

4.1 Span Identification
In all experiments, we trained each model using
the AdamW optimizer with a learning rate of 5e-5.
They are trained with batch sizes of 16 (with the
exception of DeBERTa, which used a batch size of
4 due to memory limits) , and for 25 epochs.

We first evaluate the performance of our models
on the unseen dev set. We also test aschern’s mod-
els, which utilize a CRF instead of a linear classifier.
We evaluate performance by the F1, precision and
recall values for the predicted binary labels and the
ground truth.

The results are shown in Table 1. One common
factor between all of our models is that they exhibit
high precision but low recall. It’s possible that our
models are overfitting to a set of propaganda exam-
ples, and only classify this known set of examples
as propaganda. This problem is prevalent in all
models submitted to this competition on the test
set, though to a lesser degree. The table also shows
that Aschern significantly outperforms our models,

3https://github.com/asakhala921/
Propoganda-Detection-in-News-Articles

https://github.com/asakhala921/Propoganda-Detection-in-News-Articles
https://github.com/asakhala921/Propoganda-Detection-in-News-Articles

Model F1 Precision Recall
bert-base (ours) 0.394 0.804 0.145
roberta-base
(ours)

0.228 0.555 0.270

deberta-base
(ours)

0.232 0.598 0.300

bert-CRF 0.45 0.43 0.48
distilbert-CRF 0.43 0.42 0.45
roberta-CRF 0.46 0.42 0.51

Table 1: Span Identification performance on dev set

Model F1 Precision Recall
bert-base-
uncased

0.153 0.369 0.096

roberta-base 0.111 0.298 0.068
baseline 0.0032 0.13 0.00162

Table 2: Span Identification performance on test set

signifying the importance of having a CRF layer
at the end of our models. This is likely due to the
improved ability of CRF’s to model this structured
prediction problem, rather than viewing each token
classification as independent.

To measure our performance on the test set, we
uploaded our predictions to the competition web-
site4. The results are shown in Table 2. We omitted
the results for DeBERTa, as it performed much
worse in all cases. The baseline for the competition
is a random guesser for determining propaganda
spans. Similar to the dev set results, precision is
often much higher than recall - more than likely,
our models have poor generalizability to new ex-
amples. In particular, we notice that the models
generate fewer positive predictions for propaganda
in the cases of RoBERTa and DeBERTa.

Another interesting note is that DeBERTa seems
to perform worse than the other models. In addition
to improved training approaches and model archi-
tectures, RoBERTa and DeBERTa should have an
advantage due to being trained on news datasets.
Though BERT enjoys none of these advantages, it
still outperforms the others on both the dev and
test dataset. Why this is the case, we do not know
the exact answer for this reason and more testing
would allow us to explore this issue further.

4https://propaganda.qcri.org/

Transformer
model

Sequence
length

Micro f-1
score

bert-base-uncased 256 0.6124
distillbert-base-
uncased

256 0.5970

roberta-base 256 0.6359
deberta-base 256 0.6557
deberta-large 256 0.6773
bert-base-uncased 128 0.6209
distillbert-base-
uncased

128 0.5936

roberta-base 128 0.6256
deberta-base 128 0.6341

Table 3: Technique Classification performance on dev
set

4.2 Technique Classification

We trained our models with a learning rate of 5e-
5 and with a weight decay of 1e-4. We used a
total batch size of 8 and trained till 3 to 5 epochs
(depending on the size of the model). We limit
our batch sizes per GPU to 2 and use 4 gradient
accumulation steps to fit within the constraints of
the GPU. For the learning rate, we limit warm-up
steps to a 100.

We run our experiments for total sequence
lengths (as described in Section 3.1) of 128 and 256
and train various models. Our results are shown in
Table 3.

We can see that the best performing model is
Deberta, which makes sense given its novel update
to the attention architecture. We also see that in-
creasing the context length (via increasing the max
sequence length) usually improves performance.

Since Deberta performs the best on our base
experiments, we train deberta-large for our final
model.It gives us a micro F1 score of 0.6773 on the
development set. We train it with both train and
development sets combined, and submit this to the
task leaderboard and use it as our final model for
inference in the web application too. The model
secures us position 5 on the SemEval leaderboard
for the TC task. (See Figure 2). It is available
for download at https://huggingface.co/hd10/
semeval2020_task11_tc.

Our best accuracy is on the technique class of
”Loaded Language”, while the worst performing
class is ”Black-and-White Fallacy”.

We had to truncate many of our experiments due
to memory and time constraints. We used FP16

https://huggingface.co/hd10/semeval2020_task11_tc
https://huggingface.co/hd10/semeval2020_task11_tc

training whenever we ran into GPU memory issues.
We expect to see higher gains and more experi-
ments with access to a higher compute budget.

Figure 2: Technique Classification Task Leaderboard

5 Web Application

We also built a web application to visualize the
end to end inference pipeline starting from a news
article all the way to technique classification. The
application takes an article or sentence as input,
and then runs the following pipeline

• Inference using the Span Identification model
to generate spans containing propoganda

• Data pre-processing on the generated spans
from the above task

• Inference using the Technique Classification
model on the processed spans

The articles can currently be added as input to
the application using a text box, and the pipeline
can be initiated from scratch for each new article.
The application currently supports caching of old
articles so as to provide instant results if a user
wants to revisit the old article. The application
also has a sidebar with feedback sliders for both SI
and TC tasks. These sliders are a way to collect
quick and general feedback on how the model per-
formed on the article. This feedback from the user
can be used as weak supervision to enhance the
dataset and support active learning pipelines. For
instance, this application can be used as a labeling
function in Snorkel (Ratner et al., 2017). We use
Streamlit (str) and Spacy (Honnibal et al., 2020)
for developing the application. We currently serve
it using Cloudflared tunnels 5 but the application
can be hosted using other avenues. The application
overview is represented in Figure. 3.

5https://github.com/cloudflare/cloudflared

6 Future Work

In the future, we want to explore why BERT seems
to outperform the more recent pretrained language
models on span identification. In addition, we can
experiment with different classifier layers, such
as Conditional Random Fields, as the span identi-
fication task involves some structured prediction.
Hyperparameter tuning such as epoch and batch
sizes could also be an area of additional work that
we identified during our experiments. We would
also like to explore ensemble methods of predic-
tion that combine distinct architectures or models
into a single classifier that we believe could pro-
vide new insights and very strong results for this
challenge, in both span identification and technique
classification.

References
Streamlit - the fastest way to build and share data apps.

Anton Chernyavskiy, Dmitry Ilvovsky, and Preslav
Nakov. 2020. aschern at semeval-2020 task 11: It
takes three to tango: Roberta, crf, and transfer learn-
ing. arXiv preprint arXiv:2008.02837.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Dawid Jurkiewicz, Łukasz Borchmann, Izabela Kos-
mala, and Filip Graliński. 2020. Applicaai at
semeval-2020 task 11: On roberta-crf, span cls and
whether self-training helps them. arXiv preprint
arXiv:2005.07934.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,
Jason Fries, Sen Wu, and Christopher Ré. 2017.
Snorkel: Rapid training data creation with weak su-
pervision. In Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases,
volume 11, page 269. NIH Public Access.

https://streamlit.io/
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38–45.

Figure 3: Web Application Overview

